Materi Matematika : Persamaan Dan Pertidaksamaan Nilai Mutlak

Materi Matematika : Persamaan Dan Pertidaksamaan Nilai Mutlak

Hasil gambar untuk math aesthetic
Nilai mutlak suatu bilangan dapat diartikan jarak antara bilangan tersebut dari titik nol(0). Dengan demikian jarak selalu bernilai positif.
Misalnya:
Parhatikan garis bilangan berikut.
download-5-300x143 Materi Persamaan dan Pertidaksamaan Nilai Mutlak SMA Kelas 10
Jarak angka 6 dari titik 0 adalah 6
Jarak angka -6 dari titik 0 adalah 6.
Dari penjelesan di atas memang tampak bahwa nilai mutlak suatu bilangan selalu bernilai positif. 
Berkaitan dengan menentukan nilai mutlak suatu bilangan, maka muncullah tanda mutlak. Tanda mutlak disimbolkan dengan  garis 2 ditepi suatu bilangan atau bentuk aljabar.
Secara umum, bentuk persamaan nilai mutlak dapat dimaknai seperti berikut.
download-5-300x143 Materi Persamaan dan Pertidaksamaan Nilai Mutlak SMA Kelas 10
Jika kita mempunyai persamaan dalam bentuk aljabar, maka dapat dimaknai sebagai berikut.
download-5-300x143 Materi Persamaan dan Pertidaksamaan Nilai Mutlak SMA Kelas 10
Jadi, bentuk dasar di atas dpat digunakan untuk membantu menyelesaikan persamaan mutlak.
Lebih jelasnya perhatikan contoh-contoh berikut.
Contoh 
Tentukan himpunan penyelesaian dari persamaan nilai Mutlak di bawah ini.
download-5-300x143 Materi Persamaan dan Pertidaksamaan Nilai Mutlak SMA Kelas 10
Jawaban:
1. Pada bentuk ini ada dua penyelesaian.
   (*) x + 5 = 3  , maka  x = 3 – 5 = -2
   (**) x + 5 = -3, maka x = -3 – 5 = -8
  Jadi, himpunan penyelesaiannya adalah {-2, -8}

2.  Pada bentuk ini ada dua penyelesaian.

   (*) 2x + 3 = 5  , maka  2x = 5 – 3 
                                       2x = 2  <==>  x = 1
   (**) 2x + 3 = -5  , maka  2x = -5 -3
                                         2x = -8  <==> x = -4
  Jadi, himpunan penyelesaiannya adalah {-4, 1}

3. Perhatikan bentuk aljabar di dalam tanda mutlak, yaitu x+1. Penyelesaian persamaan nilai mutlak ini juga dibagi menjadi dua bagian.

Bagian pertama untuk batasan x+1>= 0 atau x >= -1

Bagian kedua untuk batasan x+1< 0 atau x < -1
Mari kita selesaikan.

(*) untuk x >=-1
     Persamaan mutlak dapat ditulis:
    (x + 1) + 2x = 7
                   3x = 7 – 1
                   3x = 6
                     x = 2 (terpenuhi, karena batasan >= -1)

(**) untuk x < -1

     Persamaan mutlak dapat ditulis:
    -(x + 1) + 2x = 7
        -x – 1 + 2x = 7
                      x = 7 + 1                 
                      x = 8 (tidak terpenuhi, karena batasan < -1)

Jadi, Himpunan penyelesaiannya adalah {2}.


 4.  Perhatikan bentuk aljabar di dalam tanda mutlak, yaitu 3x + 4. Penyelesaian persamaan nilai mutlak ini juga dibagi menjadi dua bagian.

Bagian pertama untuk batasan 3x+4>= 0 atau x >= -4/3

Bagian kedua untuk batasan 3x+4< 0 atau x < -4/3
Mari kita selesaikan.

(*) untuk x >=-4/3
     Persamaan mutlak dapat ditulis:
    (3x + 4) = x – 8
        3x – x = -8 – 4
             2x =-12
               x = -6 (tidak terpenuhi, karena batasan >= -4/3)
(**) untuk x < -4/3
     Persamaan mutlak dapat ditulis:
    -(3x + 4) = x – 8
        -3x – 4 = x -8
         -3x – x = -8 + 4 
              -4x = -4
                 x = 1 (tidak terpenuhi, karena batasan < -4/3)

Jadi, Tidak ada Himpunan penyelesaiannya.


Menyelesaikan Pertidaksamaan Nilai Mutlak

Menyelesaikan pertidaksamaan nilai mutlak caranya hampir sama dengan persamaan nilai mutlak. hanya saja berbeda sedikit pada tanda ketidaksamaannya. Langkah-langkah selanjutnya seperti menyelesaikan pertidaksamaan linear atau kuadrat satu variabel .
Pertidaksamaan  mutlak dapat digambarkan sebagai berikut.
download-5-300x143 Materi Persamaan dan Pertidaksamaan Nilai Mutlak SMA Kelas 10
Apabila fungsi di dalam nilai mutlak berbentuk ax + b maka pertidaksamaan nilai mutlak dapat diselesaikan seperti berikut.
download-5-300x143 Materi Persamaan dan Pertidaksamaan Nilai Mutlak SMA Kelas 10




Lebih jelasnya perhatikan contoh berikut ini.


Contoh
Tentukan himpunan penyelesaian dari Pertidaksamaan nilai mutlak berikut ini.
download-5-300x143 Materi Persamaan dan Pertidaksamaan Nilai Mutlak SMA Kelas 10





Jawaban

1. Cara menyelesaikan pertidaksamaan mutlak ini sebagai berikut.
    -9 < x+7 < 9
    -9 – 7 < x < 9 – 7
       -16 < x < 2
Jadi, himpunan penyelesaiannya adalah { x| -16 < x < 2}


2. Cara menyelesaikan pertidaksamaan mutlak ini dibagi menjadi dua bagian.

   (*) 2x – 1 >=  7
             2x  >=  7 + 1
             2x  >= 8
               x  >= 4

  (**) 2x – 1 <= -7

             2x   <= -7 + 1
             2x   <= -6
               x   <= -3

Jadi, himpunan penyelesaiannya adalah { x| x <= -3 atau x >= 4}


 3. Kalau dalam bentuk soal ini, langkah menyelesaikan pertidaksamaannya dengan mengkuadratkan kedua ruas.

perhatikan proses berikut ini.
(x + 3)2 <= (2x – 3)2
(x + 3)2 – (2x – 3)2 <= 0
(x + 3 + 2x – 3) (x + 3 – 2x + 3) <= 0 (ingat: a2 – b2 = (a+b)(a-b))
x (6 – x) <=0
Pembuat nol adalah x = 0 dan x = 6
 
Mari selidiki menggunakan garis bilangan
Oleh karena batasnya <= 0, maka penyelesaiannya adalah x <=0 atau x >=6.
Jadi, himpunan penyelesaiannya adalah {x/ x <= 0 atau x >= 6}.
Mari selidiki menggunakan garis bilangan
download-5-300x143 Materi Persamaan dan Pertidaksamaan Nilai Mutlak SMA Kelas 10
Oleh karena batasnya <= 0, maka penyelesaiannya adalah x <=0 atau x >=6.
Jadi, himpunan penyelesaiannya adalah {x| x <= 0 atau x >= 6}.
 
4. Menyelesaikan pertidaksamaan nilai mutlak seperti ini lebih mudah menggunakan cara menjabarkan definisi.
Prinsipnya adalah batasan-batasan pada fungsi nilai mutlaknya.
Perhatikan pada 3x + 1 dan 2x + 4.
download-5-300x143 Materi Persamaan dan Pertidaksamaan Nilai Mutlak SMA Kelas 10



Dari batasan batasan itu maka dapat diperoleh batasan-batasan nilai penyelesaian seperti pada garis bilangan di bawah ini.
download-5-300x143 Materi Persamaan dan Pertidaksamaan Nilai Mutlak SMA Kelas 10


Dengan garis bilangan tersebut maka pengerjaanya dibagi menjadi 3 bagian daerah penyelesaian.
1. Untuk batasan x >= -1/3  ……(1)
   (3x + 1) – (2x + 4) < 10
          3x + 1 – 2x- 4 < 10
                         x- 3 < 10
                             x < 13 ..…..(2)
  Dari (1) dan (2) diperoleh irisan penyelesaian -1/3 <= x < 13
2. Untuk batasan -2<= x < -1/3  ……(1)
    -(3x + 1) – (2x + 4) < 10
          -3x – 1 – 2x – 4 < 10
                       -5x – 5 < 10
                             -5x < 15 
                               -x < 3
                             x > 3 ..…..(2)

  Dari (1) dan (2) tidak diperoleh irisan penyelesaian atau tidak ada penyelesaian.

3. Untuk batasan x < -2  ……(1)
   -(3x + 1) + (2x + 4) < 10
         -3x – 1 + 2x + 4 < 10
                        -x + 3 < 10
                             -x  < 7 
                                x > -7 ..…..(2)

  Dari (1) dan (2) diperoleh irisan penyelesaian -7 < x < -2.
Jadi, himpunan penyelesaiannya adalah {x/ -1/3 <= x < 13 atau -7 < x < -2}.

Share this:

ABOUT THE AUTHOR

Hello everyone! My name is Hana. Wekcome to my blog!

0 comments:

Post a Comment